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Abstract

During the progression of the clinical onset of Type 1 Diabetes (T1D), high-risk individuals exhibit multiple islet
autoantibodies and high-avidity T cells which progressively destroy beta cells causing overt T1D. In particular, novel
autoantibodies, such as those against IA-2 epitopes (aa1-577), had a predictive rate of 100% in a 10-year follow up (rapid
progressors), unlike conventional autoantibodies that required 15 years of follow up for a 74% predictive rate (slow
progressors). The discrepancy between these two groups is thought to be associated with T-cell avidity, including CD8z

and/or CD4z T cells. For this purpose, we build a series of mathematical models incorporating first one clone then multiple
clones of islet-specific and pathogenic CD8z and/or CD4z T cells, together with B lymphocytes, to investigate the
interaction of T-cell avidity with autoantibodies in predicting disease onset. These models are instrumental in examining
several experimental observations associated with T-cell avidity, including the phenomenon of avidity maturation (increased
average T-cell avidity over time), based on intra- and cross-clonal competition between T cells in high-risk human subjects.
The model shows that the level and persistence of autoantibodies depends not only on the avidity of T cells, but also on the
killing efficacy of these cells. Quantification and modeling of autoreactive T-cell avidities can thus determine the level of risk
associated with each type of autoantibodies and the timing of T1D disease onset in individuals that have been tested
positive for these autoantibodies. Such studies may lead to early diagnosis of the disease in high-risk individuals and thus
potentially serve as a means of staging patients for clinical trials of preventive or interventional therapies far before disease
onset.
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Introduction

Type 1 Diabetes (T1D) is an autoimmune disorder in which the

body’s own immune cells (cytotoxic T lymphocytes, CTLs) target

the insulin-secreting beta cells in the Islets of Langerhans of the

pancreas. These CTLs (including CD8z and CD4z T cells)

recognize beta cells and kill them. The process of recognition relies

on a complex interaction between a self-molecule peptide, the

MHC complex, and T-cell receptors (TCRs). Receptor affinity to

peptide-MHC complex (p-MHC) (or T-cell avidity as a whole)

varies between different subsets of T cells. High-avidity T cells are

implicated in beta-cell destruction, leading to the abolishment of

insulin secretion, which is crucial for the regulation of glucose.

The role of T cells as effectors of beta-cell death is undisputed,

although formal proof is available mainly in animal models of

autoimmune diabetes [1–6]. Multiple mechanisms have been

invoked to elucidate how beta cells are destroyed. T cells can

directly kill beta cells via cell-to-cell contact, through a cytotoxic

process, but they can also influence their destruction through other

factors, including the release of proinflammatory cytokines,

granzyme B, or perforin, and possibly signaling through pathways

of programmed cell death [7–9]. Several observations suggest that

proinflammatory cytokines, such as IL-1b, IFNc and free radicals

are mediators of pancreatic beta-cell death. Autoreactive T cells

with potential preferential usage of TCRs responsive to diabetes-

related autoantigens may serve as both a potential marker for

disease progression and a target for immune manipulation in

autoimmune diabetes.

There is also evidence suggesting the involvement of autoreac-

tive regulatory T cells in suppressing islet-specific destructive T-cell

activity of differential antigenic specificity locally in the pancreatic

draining lymph node, probably via cytokine-mediated modulation

of antigen-presenting cells [10–12]. In the present work we have

elected to model effector T-cell responses because of their close

relationship to cytotoxic T-cell-mediated islet injury, proinflam-

matory cytokine secretion and autoantibody formation.

Although autoreactive CD8z and CD4z T cells are required

for the initiation and progression of the disease, the cellular

dynamics leading to disease progression are still not well

understood. However, many factors may be combined to

determine the risk of T1D disease progression. These include

multiple islet autoantibodies, family history of diabetes, genotype

(e.g. HLA) and environmental factors. The prognostic significance

of any of these risk factors may be modified by the presence or
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absence of others [13–22]. Previous investigative studies have

mainly focused on the identification of new immunologic and

genetic biomarkers to predict T1D in an effort to facilitate studies

in future development of immune-based therapy to treat the

disease (see [23], and references therein).

During the progression of the clinical onset of T1D, high-risk

individuals exhibit multiple islet autoantibodies and high-avidity T

cells. The presence of multiple islet autoantibodies and alleles at

the HLA DR and DQ class II loci such as GAD65, IA-2, ZnT8,

insulin and cytoplasmic islet cell antibodies (ICA), are considered

predictive for the development of clinical T1D among relatives of

T1D patients [24–30]. The presence of these biomarkers indicates

that the autoimmune process leading to pancreatic beta-cell

damage has already been initiated. Previous studies have also

reported that conventional autoantibody markers (GAD65, IA-2,

insulin and ICA), although useful, do not appear to be sufficient in

predicting T1D [24,31]. In fact, recent observations suggest that

autoantibodies against the initial 277 amino acid residues of

extracellular domain of the neuroendocrine antigen IA-2 in

combination with conventional markers can identify rapid

progressors of T1D onset when compared to conventional markers

alone [23,24,32]. This is confirmed in studies showing that in a

subgroup of relatives who are positive for GAD65 and novel

autoantibodies against the IA-2 epitopes (but not conventional

ones) expressed in the extracellular domain of this molecule

confers a cumulative risk of 75% at 8 year and 100% by 10 year

follow-up. In contrast, the presence of §2 conventional auto-

antibody markers confers a cumulative risk of 58% at 10 years,

63% at 11.5 years and only 74% at 15 year follow-up [24,27,31].

The first group was termed rapid progressors and the second

group slow progressors.

It has been hypothesized that the pace of the disease in both

groups is controlled by the avidity of T cells that react to the same

islet-specific autoantigens that autoantibodies react to [30,33]. In

other words, a given epitope on a beta-cell protein will specify the

types of autoantibodies and autoreactive T cells that govern the

swiftness of the disease. While it is perfectly reasonable to assume

such a correlation between autoantibodies and T-cell avidity, the

interconnection between these two key factors remains unclear.

Here we show that this correlation is also dependent on the

efficacy of T cells in killing beta cells, and we examine all possible

responses associated with different levels of T-cell avidity and

killing efficacy.

Attempts to analyze the interactions between different islet

autoantibodies and antigen-specific T-cell proliferation have been

hindered by the relatively small numbers of high-risk subjects

available for such analyses, as well as the inherent technical

challenges in evaluating antigen-specific T-cell proliferation during

the pre-clinical stage of T1D. Therefore, we construct here a series

of mathematical models to investigate the discrepancy in

predicting T1D disease onset exhibited by the two groups (rapid

versus slow progressors) based on the notion of T-cell avidity. We

initially develop a one-clone model consisting of an antigen-

specific population of activated (CD8z and/or CD4z) T cells and

naı̈ve/mature B cells (plasma cells) to investigate the timing of

disease onset. The model identifies regimes in which T-cell avidity

and killing efficacy, together with the level of autoantibodies

secreted by plasma cells, determine the timing of disease onset.

Such studies will be quantitatively helpful in correlating these two

notions with the ability of autoantibodies (whose titer levels in

blood samples taken from high risk subjects are more easily

measured than T-cell avidity and killing efficacy) in predicting the

disease. We then extend the model to include two clones of T cells

and B/plasma cells each reactive to a different islet autoantigen.

The avidity of one of the two clones of T cells is assumed higher,

and each clone is divided into low- and high-avidity subclones.

The effects of T-cell subclonal competition, within each clone, on

disease progression and level of autoantibody are investigated to

determine the impact of avidity maturation on beta-cell destruc-

tion. The models presented here are related to those in [34–39].

Results

Mathematical models
Full one-clone model. Based on the scheme of Fig. 1, we

include in this model the following list of cells: insulin-secreting

beta cells (b); islet-specific autoreactive T cells, including either

CD8z, CD4z or both (whenever they are reactive to the same

autoantigen) (Tc); islet specific autoreactive B cells (B); and mature

immunoglobulin-secreting B cells or plasma cells (Pc). We assume,

based on the evidence in [40], that beta cells undergo

programmed cell death (or apoptosis) and that defective

clearance of dead beta cells by macrophages triggers T- and B-

Figure 1. Scheme showing the various factors involved in beta-
cell destruction in T1D. Two competing clones of cytotoxic T
Lymphocytes, Tc1,Tc2 (including either CD8z, CD4z, or both), and B
cells, B1,B2 , are considered. An initial wave of beta-cell (b) apoptosis and
defective clearance trigger autoimmunity by activating several clones of
T and B cells via autoantigen presentation (Auto-Ag, P1,P2) on APCs (gray
triangles), including B cells (dashed arrows). Clonal selection and
activation of B cells lead to B-cell maturation into immunoglobulin
(autoantibody: Auto-Ab, Ig1,Ig2) secreting plasma cells, Pc1,Pc2 , in the
presence of various cytokines secreted by effector type CD8z and CD4z

T cells. Beta-cell lysis is amplified by expanding the pool of effector type
CD8z and CD4z T cells (and their secreted cytokines), forming a positive
feedback loop. The dotted circle and arrows indicate that the equation
for cytokines is approximated by its steady state, while dashed arrows
indicate that direct activation of T cells by B cells is ignored (i.e. the
parameters describing T-cell activation by APCs is averaged over the
three subpopulations of APCs, including macrophages, DCs and B cells).
Eqs. (1a)–(1f) and Eqs. (3a)–(3g) follow this scheme.
doi:10.1371/journal.pone.0014796.g001
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cell activation via antigen presenting cells (APCs). Autoantigens (P)

taken up by APCs and expressed as peptide-MHC (p-MHC)

complexes expressed on their surface are responsible for the

activation of these thymocytes in the lymph nodes of the pancreas.

In our previous studies, we have modeled autoantigen processing

and p-MHC formation in beta cells and APCs [36], but here we

assume for simplicity that such processes are fast and reach steady

state rapidly compared to the long time scales studied here (years).

Even though multiple islet-specific autoantigens are implicated

in T1D (including insulin, proinsulin, IA-2, GAD, etc.), in this

scheme we limit ourselves to only two autoantigens. The activated

T cells infiltrate the islets and cause more damage to the surviving

beta cells either directly via cell-to-cell contact (by CD8z T cells)

or indirectly via harmful cytokines such as IL1-b (secreted by

CD8z and/or CD4z T cells). The destruction of beta cells thus

leads to a positive feedback loop that drives the system

autocatalytically. We combine the effects of CD8z and CD4z

T cells that are reactive to a given autoantigen in one pool and

assume, as an approximation, that the secreted cytokines reach

steady state rapidly.

On the other hand, immunoglobulin-expressing B cells are also

activated by autoantigen uptake (P) and eventually mature into

plasma cells. Plasma cells are efficient producers of immunoglob-

ulin (autoantibodies: Ig) that are released in the circulation. There

is a weak evidence for the enrollment of B cells in beta-cell

destruction [41], but, as indicated in the scheme of Fig. 1, we

ignore such effects. Furthermore, we assume that the vast majority

of circulating immunoglobulin is produced by plasma cells with a

very small fraction from B cells. B cells may act as APCs in the

activation of T cells, but here we assume that the activation is

mostly carried out by dendritic cells (DCs) (see below).

By initially focusing on only one clone of T and B cells that are

reactive to one given autoantigen, we can, based on the above

assumptions, express the scheme of Fig. 1 by a system of six

ordinary differential equations, given by

dTc

dt
~aTc

P

Pzekk {dTc Tc{ T2
c ð1aÞ

dB

dt
~cz({egg2PTczegg1P{g0)B ð1bÞ

dPc

dt
~egg2PTcB{dPc Pc ð1cÞ

dIg

dt
~a1Bza2Pc{dIg Ig ð1dÞ

db

dt
~{kTcb ð1eÞ

dP

dt
~RTcb{dPP, ð1fÞ

where aTcP=(Pzekk) describes the peptide-dependent T-cell self-

renewal (which follows Michaelis Menten kinetics), with ekk
representing the level of peptide for 50% maximum activation,

as suggested by [42,43], dTc Tc is T-cell turnover, T2
c is T-cell

homeostasis due to intra-clonal competition (for p-MHC binding

sites on APCs and beta cells, since all T cells in this one pool are

reactive to the same peptide), c is the basal level of B-cell

production from bone marrow, egg2PTcB and egg1PB are the

peptide-dependent B-cell maturation into plasma cells (via helper

T cells whose population size is assumed to be roughly constant,

embedded in the value of the parameter egg2 for simplicity) and B-

cell self-renewal, respectively (both of which are proportional to

the level of autoantigenic peptides expressed on APCs, an

interaction required for B-cell maturation and expansion, as

elaborated in Assumption 6 below), g0B is B-cell turnover, dPc Pc is

plasma-cell turnover, a1B and a2Pc are immunoglobulin secretion

from B cells and plasma cells, respectively (presumed proportional

to B- and plasma-cell population sizes, with a1%a2 because

plasma cells are much more efficient producers of immunoglobulin

than B cells), dIg Ig is immunoglobulin turnover, kTcb is beta-cell

killing by T cells (and harmful cytokines) occurring at a rate k
(assumed to be roughly constant during disease progression for a

given individual [35,44]), RTcb is peptide production (which

follows mass-action kinetics [35,44]) when T cells exert cytotox-

icity on beta cells at a rate R per T cell per beta cell, and finally

dPP is autoantigenic peptide turnover. The density-dependent

intra-clonal competition term { T2
c is an essential component of

the model, because it guarantees bistability and prevents the the

model from having an unbounded expansion in the level of T cells,

as we shall demonstrate later.

Implicit in the model are the following assumptions:

1. The T-cell pool is occupied mostly by terminally differentiated

effector cells and a small compartment of memory cells

responsible for self-renewal. The proliferation rate of this

compartment, a, is small and roughly proportional to the

population size of APCs, A, assumed constant (i.e. a&�aaA). The

ability of this memory cell compartment to self-replicate can

keep, in certain cases (see below), the level of T cells elevated

for prolonged durations extending beyond the time when a

critical number of beta cells is lost. We therefore do not include

in this model a separate non-vanishing pool of memory T cells

to account for a continuously elevated level of T cells (suggested

in [45]), an assumption that simplifies the analysis significantly.

2. The inclusion of peptide-dependent thymus input of T cells has

been demonstrated to produce similar results to when it is

neglected [34]. Therefore, we ignore here the effects of thymus

input and focus on self-replication as the only source of newly

activated T cells. The observed high level of peripheral

autoreactive (high-avidity) T cells in genetically susceptible

individuals (carrying, e.g. the INS-VNTR I/I genotype in the

case of proinsulin-reactive CD4z T cells [46]), that escape

central tolerance (including the thymus), is accounted for by the

initial conditions (i.e. initial level of T cells).

3. T-cell activation is carried out by APCs averaged over three types

of cells: macrophages (w), dendritic cells (DCs) and B cells. As

suggested by Fig. 1, direct involvement of B-cell pool in activating

T cells is ignored in the model. (We demonstrate in the Supple-

mentary Material S1 that discarding this simplifying assumption

only moderately alters the general behaviour of the model.)

4. The beta-cell Eqn. (5) is assumed to be a simple decay that

depends linearly on the level of effector T cells. We do not

include a source term for beta-cell replication or neogenesis,

because experimental evidence for such behaviour is lacking.

The spatial distribution of beta cells in islets (of Langerhans in

the pancreas) is also ignored in this formulation and the total

Predicting T1D Disease Onset
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number of beta cells within one pool is considered instead.

With such formalism, the stochastic effects of having small

number of T cells infiltrating these islets become negligible.

5. As suggested earlier, plasma cells are assumed to be much more

efficient than B cells in secreting immunoglobulin (autoanti-

bodies) in the blood circulation (i.e. a1%a2). The presence of

the very small factor a1w0 is responsible for the ‘‘basal level’’

of Ig secretion in the absence of plasma cells.

6. Quasi-steady state (QSS) approximation is applied on the

cytokines. This makes cytokine concentration (S) proportional

to the population size of T cells (i.e. S&LTc). Since B-cell

maturation requires both the interaction with APCs (as well as

T helper cells, assumed to have constant level), expressing p-

MHC complexes on their surface, and T-cell secreted

cytokines, this QSS approximation leads to a T-cell- and

peptide-dependent B-cell maturation described by the term

egg2PTcB.

Reduced one-clone model. For simplicity, we focus first on

a two-dimensional model of T cells and plasma cells obtained from

the full one-clone model above (1a)–(1f). We use the fact that the

dynamics of beta cells is very slow on the time scale of T-cell

activation, due to homeostatic mechanisms that regulate the beta-

cell population [36,47], i.e. b& constant (~b0). However, as beta

cells are killed, autoantigenic peptides rapidly accumulate due to

defective clearance, indicating fast peptide dynamics; this justifies a

QSS approximation for the peptide ([36,44] and references

therein). For simplicity, we also assume that the rate of B-cell

maturation into plasma cells is fast so that QSS approximation can

be used on B cells (Eqn. (1b)). Since immunoglobulin has no effect

on the dynamics of the model (does not have any pathological

effects), Eqn. (1d) can be neglected. In this case, the one-clone

model becomes a two-variable model given by

dTc

dt
~aTc

Pss

Psszekk
{dTc Tc{ T2

c ð2aÞ

dPc

dt
~egg2PssTcBss{dPc Pc, ð2bÞ

where Bss&c=(egg2PssTc{egg1Psszg0), Igss&(a1Bssza2Pc)=dIg

and Pss&RTcb0=dP.

The two-dimensional reduced model will be used in the next

section to understand and illustrate various aspects of the full one-

clone model. It possesses a reduced number of parameters (and thus

less computational uncertainty) and can be investigated thoroughly

using dynamical systems tools that could be helpful in determining

how sensitive the model is to parameter perturbations. In particular,

we can gain insights by examining the Tc- and Pc-nullclines in the

phase plane. We further simplify the analysis by considering scaled

versions of the two models derived in Supplementary Material S1.

Scaling also reduces further the number of parameters that have to

be estimated by identifying parameters that only appear in

combination with each other. We use lowercase letters hereafter

to denote scaled variables and present our results and simulations in

terms of these scaled quantities.

Coexistence of the healthy and autoimmune states
Effects of T-cell avidity on the reduced model. We follow

the ideas of [48] that disease emerges through the existence of a

region of bistability. We find as expected (see Supplementary

Material S1) that the scaled version of the reduced model (2a)–(2b)

exhibits bistable behaviour in which one steady state, S1~(0,0), is

stable and corresponds to healthy individuals, while the other

steady state, S2, possessing an elevated level of autoreactive T cells

(and plasma cells), is also stable but corresponds to type 1 diabetic

patients. [In the case of the full one-clone model, S2 becomes a

transient (quasi-stable) steady state, see below.] By considering the

points of intersection of the tc- and pc-nullclines, we demonstrate

in Supplementary Material S1 that these two states coexist

whenever 0ƒkƒ1, where

k~
dpeekk

(a1=2{d
1=2
Tc

)2Rb0

can be considered as the reciprocal of T-cell avidity. Bistability is

lost in favor of the healthy state S1 (i.e. S1 becomes a global

attractor) whenever kw1. In Fig. 2(A), we show the tc- (gray) and

pc- (black) nullclines of this model. Using the parameter values

listed in Table 1, the two states S1 and S2 (denoted by the black

dots at the intersections of the nullclines) are separated by an

unstable saddle point, U (white dot), whose unstable manifold (the

gray vertical line corresponding to the middle tc-nullcline) is a

separatrix between the basins of attraction of the two stable states

S1 and S2 (black dots). Increasing T-cell avidity (decreasing k)

shifts the right-most gray vertical tc-nullcline to the right, thereby

increasing the size of the basin of attraction of S2 and diminishing

the basin of attraction of S1, due to a left-shift in U along the pc-

nullcline towards the healthy state. In panel (B), we confirm the

bistable behaviour by showing how the time evolution of T cells

(solid) and plasma cells (dashed) either rise to elevated levels

corresponding to S2 (in black) or decay to undetectable levels

corresponding to S1 (in gray), depending on the initial values of

these two types of cells (which are assumed to have escaped central

tolerance). This is illustrated in another way by constructing the

bifurcation diagrams of pc and tc with respect to k, shown in

panels (C) and (D), respectively. The dashed line (representing the

saddle point) is very close to the lower horizontal solid line

(representing the healthy state S1) when k is small. These two

panels also show that bistability of S1 and S2 (shown in black lines)

is exhibited within the range 0ƒkv1, but disappears at k~1
when S2 and the saddle point U (shown as dashed line) merge

together at a saddle-node bifurcation point. Panel (D) shows

further that the level of T cells in the autoimmune state increases

with increasing avidity, but the level of plasma cells (a read-out for

the level of autoantibodies; panel (C)) stays roughly the same.

Such behaviour has been encountered in previous models involving

autoreactive T cells [34–36]. The main difference in this model is that

the autoimmune state S2 is a transient state that moves as beta-cell

number decreases and is tracked by the solution trajectories in the full

one- and two-clone models, as we shall demonstrate later.

Effects of beta-cell number on the reduced model. In the

formulation of the (scaled) reduced model used above, the size of

the beta-cell population was assumed to be constant as an

approximation, because it is slowly varying. However, on longer

time scales, the decline in beta-cell number affects T-cell and

plasma-cell number because there is less peptide to drive T-cell

proliferation (Eqs. (2a)–(2b)). To determine these effects we plot

the bifurcation diagrams of pc and tc with respect to the parameter

bs~b=b0, where b0 is the initial (normal) number of beta cells.

Note that the quantity bs appears in the scaled reduced model as a

scaling factor, 1=bs, to both k, which was used as a bifurcation

Predicting T1D Disease Onset
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parameter in Fig. 2, and g0 (see Supplementary Material S1). A

decrease in bs, due to the autoimmune attack, causes a left-shift in

the right-most vertical tc-nullcline and a decrease in the steepness of

the pc-nullcline. The bifurcation diagrams shown in Fig. 3 confirm

this outcome when evaluated at two different levels of T-cell avidity:

high (k~0:26) and low (k~0:9). In addition to an increase in the

range of bistability between S1 and S2 during an increase in T-cell

avidity, we observe a decline in the size of the T-cell pool in S2

(panel (B)) at high-avidity when bs decreases. This behaviour is not

exhibited by plasma cells, pc (in panel (A)), whose population size

remains roughly the same for a whole range of bs values.

The implications of this behaviour for disease progression and

the expression of autoantibodies will become apparent when we

study the full one-clone model.

Dependence of immunoglobulin predictability on T-cell
avidity and killing efficacy

Model responses and parameter regimes. It has been

hypothesized [30,33] that the discrepancy in the timing of T1D

disease onset between rapid progressors and slow progressors,

defined as having been tested positive for new and conventional

autoantibodies, respectively, is due to the avidity of T cells reactive

Figure 2. Increasing T-cell avidity (decreasing k) induces bistability. (A) The phase plane of the scaled version of system (2a)–(2b) (see
Supplementary Material S1), displaying the tc- and pc-nullclines for kv1 (i.e. for a high level of T-cell avidity). The three vertical gray lines are the tc-
nullclines, while the Hill-like black line is the pc-nullcline. Stable steady states S1~(0,0) and S2 are shown as black dots, while the unstable steady
state U is shown as a white dot. The dashed line traces the time-dependent level of T and plasma cells obtained from the scaled version of full one-
clone model (1a)–(1f) superimposed on this phase plane (the arrow-heads represent the direction of flow). (B) The time evolution of tc (solid) and pc

(dashed), approaching the autoimmune (black) and healthy (gray) states, depend on the initial level of T cells (tc(0)). The bifurcation diagrams of (C)
tc , and (D) pc with respect to k~k are shown displaying the stable steady states S1 and S2 in solid lines and the unstable steady state U in a dashed
line. As demonstrated in Supplementary Material S1, bistability is only observed for 0ƒkv1, while at k~1, S2 and U merge together at a saddle
node bifurcation point, leaving the healthy state S1 to become a global attractor for kw1 (i.e. for a low level of T-cell avidity).
doi:10.1371/journal.pone.0014796.g002

Table 1. Values of the standard parameters appearing in the scaled version (see Supplementary Material S1) of Eqs. (1a)–(1f).

Symbol Meaning Value Range Ref.

a Expansion rate of T cells 4 day{1 [2–20] [34–36,60]

dTc
T-cell turnover rate 0.1 day{1 [0.01–0.3] [34–36,60]

k~�kk Peptide level for 50%-max activation of T cells 0:26 [0–1.4] [42,43]

e Competition parameter 5|10{6 (day:cell){1 - [34,35]

g0 Turnover rate of B cells 0.02 day{1 - [58]

g1~�gg1 Expansion rate of B cells 5:67|10{3 day{1 - [58]

g2~�gg2 Maturation rate of B cells 2.858 day{1 - [58]

dPc
Plasma-cell turnover rate 0.2 day{1 - [58]

dIg
Immunoglobulin turnover rate 0.034 day{1 [0.001–0.034] [58]

‘ B-to-plasma immunoglobulin secretion ratio 0.1 - [58]

k Killing rate of beta cells 7|10{10 day{1 ½10{11{10{7� [35,43]

dP Peptide turnover rate 0.1 day{1 [34–36,44]

doi:10.1371/journal.pone.0014796.t001
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to the same autoantigenic peptides (epitopes) that autoantibodies

react to. In our analysis here, we demonstrate that not only is T-

cell avidity a key factor in this process, but also the killing efficacy

of T cells, which is a measure of the strength of the apoptotic signal

induced inside beta cells by T cells. We assume for simplicity that

the killing efficacy is constant for each individual, though it is

possible that it varies as the disease progresses.

In order to perform our analysis, we turn our attention to the

full one-clone model (1a)–(1f) to view the effects of the

autoimmune assault on beta cells. We define the clinical onset of

T1D as the time when only 30% of beta-cell number is left (called

the critical threshold). While it is true that in most T1D patients,

*90% of beta cells are lost or become dysfunctional after the

autoimmune attack (or at steady state), symptoms of the disease

may appear earlier, after *70% of beta-cell loss. (Our analysis

remains the same even if the threshold is reduced to a lower value,

except for a right and downward shift in the thick black threshold

curve shown in Fig. 4(A).) Since thymus input has not been

included in this model, we take the initial level of CD8z and/or

CD4z T cells that escaped ‘‘central tolerance’’ to be non-zero.

In Fig. 4(A), we examine the steady-state level of beta cells, using

the scaled quantity bs, over a range of T-cell avidity

({2ƒ log (k)ƒ0) and killing efficacy ({11ƒ log (k)ƒ{7).

The two quantities k and k, however, are suggested to be

inversely correlated with each other for a given T-cell population

reactive to a specific autoantigen (i.e. increased avidity would lead

to increased killing efficacy) [49]. Since this correlation is

quantitatively unknown, we consider here a whole range of values

for k and k to keep our analysis as general as possible. Our aim is

to determine the model response in various parameter regimes and

observe the long term effects of simultaneously changing the values

of these two parameters on beta cells. We track the steady state-

level of beta cells using a spectrum of colours in which red stands

for higher levels of beta cells, and blue stands for lower levels, as

shown in the calibrated colour bar on the right. The red band at

the top part of panel (A) indicates that if the average avidity of

CD8z and/or CD4z T cells is low enough, i.e. k near 1, then

beta cells are safe from T-cell destruction regardless of T-cell

killing efficacy. Similarly, the left red band on the same panel

demonstrates that most beta cells also survive if the killing efficacy

is very small, i.e. k*5|10{11, independently of T-cell avidity.

However, increasing k and decreasing k simultaneously, pushes

the size of beta-cell population below the critical threshold

highlighted by the thick black line separating those that show

clinical symptoms of T1D from those that do not. The worst case

scenario is shown in the bottom right corner of panel (A), where

less than 10% of beta cells survive a strong autoimmune assault by

a highly avid T-cell population possessing high killing efficacy. The

time to disease onset (i.e. when the 30% threshold is reached) is

plotted in panel (B) over the same k-k parameter space; as k
increases, the time to onset decreases from 15 years (slow) to less

than 1 year (fast). In other words, the two parameters k and k
dictate how fast the disease may manifest itself for each individual.

(The Supplementary Material S2 shows a movie displaying the

gradual loss of beta cells over the same k,k-parameter space and

over a 30-year period as an illustration.)

We now correlate the landscape of beta-cell survival with the

level of circulating autoantibodies at various time points: six

months after emergence of a non-zero level of T cells (C), at

disease onset for those that become diabetic (D) and at steady state

(E). The colour pattern used in these panels is the same as in panel

(A). Four distinct parameter regimes (highlighted in panel (E)) can

be observed in the k-k parameter space: (i) The bottom/left

corner, left of the critical threshold: The level of autoantibodies

remains elevated at all times but without reaching diagnostic T1D

(such a scenario may correspond to high-risk subjects who test

positive for conventional autoantibodies but never develop T1D);

(ii) Middle/bottom regime, right of the critical threshold: As in the

previous case, the level of autoantibody here also remains elevated

throughout, but individuals in this group eventually develop T1D

(this includes both rapid and slow progressors, as shown in panel

(B)); (iii) Middle/bottom regime, right of the red region in panel

(E): In this case, the level of autoantibodies stays elevated until

disease onset, then decays to its basal level (which may not be

detectable) at steady state (such a scenario may correspond to

rapid progressors who lack elevated level of autoantibodies at later

stages of the disease [50]; and (iv) Right/bottom corner, right of

the red region in panel (D): Individuals belonging to this regime

develop diabetes very rapidly but never become positive for

autoantibodies. This peculiar case occurs because the killing

efficacy of T cells, k, is so large (and may be biologically

unreasonable) that a small population of T cells can destroy more

than 70% of beta cells. Such behaviour is possible in theory, but k
likely cannot be that big.

Figure 3. Effects of declining beta-cell number on T- and plasma-cell population sizes. Bifurcation diagrams of (A) tc and (B) pc with
respect to the parameter 0vbƒ1 according to the scaled version of system (2a)–(2b) (see Supplementary Material S1) at various levels of T-cell
avidity (k~0:26 and 0.9), are shown. As in Fig. 2, stable steady states are in solid lines and unstable steady states are in dashed lines. At high T-cell
avidity, the range of bistability is large, but the decline in beta-cell number leads to a decrease in T-cell population size.
doi:10.1371/journal.pone.0014796.g003
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Time evolution. To show typical changes in the level of beta

cells and autoantibodies over time for two pairs of parameter

combinations for k and k, identified by a white circle (Q1: k~0:26
and k~7|10{10 day{1) and white square (Q2: k~0:02 and

k~3|10{10 day{1) in Fig. 4, panels (A) and (C–E), we simulate

the scaled version of Eqs. (1a)–(1f) (see Supplementary Material

S1) in Fig. 5. (We call the clone of T cells corresponding to the

parameter combination in Q1 the ‘‘standard clone’’ hereafter.) For

the standard clone, the levels of T cells, shown in panel (A1), and

plasma cells, shown in panel (B1), initially rise and approach the

autoimmune steady state S2, obtained from (the scaled version of)

the reduced model (2a)–(2b), due to the fast rise in the level of

autoantigenic peptides derived from killed beta cells. When the

level of beta cells starts declining, the autocatalytic process driven

by T cells also declines (and eventually ceases when beta-cell loss

goes below the 30% threshold, shown in panel (D1)), leading to a

decrease in the level of T cells and plasma cells. Such a decrease

makes S2 a transient state in the (scaled) full one-clone model. This

means that solution trajectories that start from the ‘‘basin of

attraction of S2’’, would initially and very quickly approach S2 and

remain in its vicinity for as long as S2 exists (for about 11 years).

The decline in the size of the beta-cell population, however, shifts

S2 to the left as shown in Figs. 2(A) and 3. If the nullclines in Fig. 2

are plotted as b changes (not shown), the solution trajectories of

the full scaled one-clone model (dashed line in Fig. 2(A)) remain in

quasi-steady state and track along the pc-nullcline until S2 and U

merge together at a saddle-node bifurcation point and disappear

(due to a decrease in the level of autoantigen below k, the required

amount to keep T-cell replication more dominant over its

turnover). At this point, S1 becomes a global attractor. Although

the steady state S1 of the reduced one-clone model remains well-

defined mathematically as tc~0, pc~0, it can no longer be called

a healthy state, because it is attained after a massive beta-cell loss.

The level of autoantibodies for this case is shown in Fig. 5(C1),

using the scaled quantity ig, and exhibits similar behaviour as tc

and pc. The level of autoantibodies initially rises to an elevated

level and stays there for about 11 years before it declines to its

basal level. Even though such biphasic behaviour in ig has been

observed in NOD mice [50], experimental evidence suggests that

the level of autoantibodies remains elevated in most type 1 diabetic

human subjects throughout their life span [45]. This behaviour

can be obtained from the model using the parameter combination

corresponding to Q2 which belongs to parameter group (ii). As

shown in the right half of Fig. 5, the levels of T cells tc (A2), plasma

cells pc (B2) and autoantibodies ig (C2) remain elevated beyond 11

years even though the critical threshold of beta-cell number

Figure 4. Dependence of T1D disease onset and autoantibody predictability on T-cell avidity and killing efficacy. The simulations here
have been generated using the scaled version of the full one-clone model (1a)–(f) (see Supplementary Material S1). Colour represents the level of (A)
beta cells, and (C–E) autoantibodies according to the colour-bar on the right. All axes are in logarithmic scale. (A) The steady state level of bs after an
autoimmune assault by CD8z and/or CD4z T cells. The black line corresponds to 30% of beta cells remaining (citical threshold). It forms the border
line between clinically diagnosed T1D cases from non-diabetic cases. When the level of T-cell avidity is low enough (high k value, dark red region),
beta cells remain safe from an autoimmune attack regardless of T-cell killing efficacy. (B) Duration between the emergence of an elevated level of
islet-specific autoreactive effector T cells and disease onset (measured in years). Five curves corresponding to 1, 3, 7 and 15 years for disease onset are
identified. (C–E) The level of autoantibodies after 6 months of possessing elevated level of T cells (C), at disease onset (D) and at steady state (E) are
shown. Four parameter regimes in the k,k-space are identified from these panels (highlighted in panel (E)): A regime corresponding to (i) possessing
elevated level of autoantibodies throughout without reaching diagnostic T1D; (ii) possessing elevated level of autoantibodies throughout and
reaching diagnostic T1D; (iii) possessing elevated level of autoantibodies until disease onset; and (iv) never possessing elevated level of
autoantibodies but still developing T1D. The white circle (Q1) and square (Q2) in panels (A), (C–E) correspond to the parameter choices made for k
and k in Figs. 5 and 7.
doi:10.1371/journal.pone.0014796.g004
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(shown in panel (D2)) is reached in less than 11 years. If the

simulation is continued beyond 60 years, it can be seen that the

behaviour of the model for parameter combination Q2 is very

similar to that for Q1. The trajectory again ends up at S1, like the

dashed line in Fig. 2(A), but it takes much longer to get there. The

higher avidity and lower killing efficacy of the T-cell population in

the case of Q2, makes it more capable of replicating and destroying

beta cells, but it kills more slowly than in the case corresponding to

Q1, leading to longer T-cell survival for Q2 in spite of lower final

beta-cell level.

The outcomes described above (which can be validated

experimentally) suggest that looking for the high-frequency high-

avidity cells may be more successful during the preclinical

autoimmune phase of disease, particularly for the more unique

specificities such as the IA2 (and maybe ZnT8) targets.

It should be mentioned here that altering the simplifying

assumptions 1, 3 and 4 associated with the full one-clone model

(i.e. by adding a non-vanishing pool of memory T cells, adding a

source term for beta-cell replication/neogenesis, or by making a1

comparable to a2), could also result in a maintained elevation in

the level of autoantibodies in the four parameter regimes (i)–(iv)

defined for Fig. 4.

Two competing clones
Model formulation. In the two models presented above (the

full one-clone and reduced models), we limited autoreactivity to

one autoantigenic peptide. In reality, several autoantigenic

peptides are involved, leading to multiple clones of T and B

cells, each with a given autoantigenic specificity. The interaction of

these clones with each other and within themselves (due to the

presence of different levels of avidity within each clone) has so far

been neglected. We include here a new model which takes into

account two clones of T cells that are reactive to two different

autoantigens (Auto-Ag1 and Auto-Ag2), each of which consists of

two subclones of high- and low-avidity T cells. Following the

scheme in Fig. 1, we obtain the following extended two-clone

model

dTc1j

dt
~a1jTc1j

P1

P1zekk1j

{dTc1j
Tc1j{ Tc1j(Tc11zTc12) ð3aÞ

dTc2j

dt
~a2jTc2j

P2

P2zekk2j

{dTc2j
Tc2j{ Tc2j(Tc21zTc22) ð3bÞ

dBj

dt
~cjz {egg2jPjG(Tc11,Tc12,Tc21,Tc22)zegg1jPj{g0j

� �
Bj ð3cÞ

dPcj

dt
~egg2jPjG(Tc11,Tc12,Tc21,Tc22)Bj{dPcj

Pcj ð3dÞ

dIgj

dt
~a1jBjza2jPcj{dIgj

Igj ð3eÞ

db

dt
~{kG(Tc11,Tc12,Tc21,Tc22)b ð3fÞ

dPj

dt
~RjG(Tc11,Tc12,Tc21,Tc22)b{dPj

Pj , ð3gÞ

where j~1,2 and G(Tc11,Tc12,Tc21,Tc22):r(Tc11zw1Tc12)z
Tc21zw2Tc22. Here wjw1, j~1,2, are, respectively, the relative

effect of Tcj2 to Tcj1 in inducing B-cell maturation and beta-cell

killing, whereas rv1 is the relative effect of Tc11zw1Tc12 to

Figure 5. Time evolution of the scaled variables of Eqs. (1a)–(1f). Two parameter combinations (A1–C1) Q1 : k~0:26, k~7|10{10 day{1;
and (A2–C2) Q2 : k~0:02, k~3|10{10 day{1 , have been used (see Fig. 4). All horizontal axes are in logarithmic scale. The level of (A1–A2) tc , (B1–B2)
pc , (C1–C2) ig and (D1–D2) bs are shown. In the Q1 case (A1–C1), the level of islet-specific autoreactive T cells, plasma cells and autoantibody
concentration are transiently elevated until disease onset (i.e. when surviving beta-cell level reaches 30% critical threshold), while in the Q2 case (A2–
C2), they remain elevated for over 60 years (significantly beyond the time it takes to reach the 30% critical threshold). For both parameter
combinations, the autoimmune state S2 is transiently formed (together with U ) due to an increase in the level of peptide, steering solution
trajectories away from the healthy state S1 and causing more beta-cell death. When the level of peptide settles down, S2 disappears and solution
trajectories return back to S1 (much faster in the Q1 case than in the Q2 case), generating a loop around the healthy state.
doi:10.1371/journal.pone.0014796.g005
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Tc21zw2Tc22 in inducing similar outcomes. In other words, the

ascending order of T-cell avidity of these four subclones is assumed

to be as follows: Tc11, Tc12, Tc21, Tc22 (i.e. ekk11w
ekk12w

ekk21w
ekk22),

while their ascending order of killing efficacy is: Tc22, Tc21, Tc12,

Tc11 (i.e. k22wk21wk12wk11), as shown in Fig. 6. (These

assumptions are consistent with the inverse correlation thought

to exist between k and k, as stated earlier.) The turnover rates of

these four subclones, dTcij
, i,j~1,2, also satisfy: dTc22

wdTc21
and

dTc12
wdTc11

to account for the shorter half-life of the higher

avidity subclones and their susceptibility to activation-induced cell

death (AICD) (observed in both CD4z and CD8z T cells)

[49,51,52]. Cross competition between T-cell clones with different

specificity (i.e. Tc1j versus Tc2j , j~1,2), due to limited membrane

surface area of beta cells and DCs, is expected to be lower than the

direct competition within each clone (whose cells compete for the

same p-MHC surface complexes), and therefore would lead to no

significant changes in the dynamics of the model if included. Such an

outcome has been previously demonstrated in [53] and was

confirmed here by numerically testing the effect of cross-competition

whose values were lower than . For this reason, we have ignored

cross-competition between Tc1j and Tc2j (j~1,2) in this model and

only considered direct competition within each clone.

Model outcomes. In Fig. 7, we investigate the responses of

the model defined by Eqs. (9)–(15) to variations in the value of k21

to determine the effects of indirect competition exerted by Auto-

Ag2-specific subclone, tc21 (in gray/solid lines), and its avidity on

disease progression. Each row corresponds to a different value of

avidity for tc21 (chosen in such a way that the inequality

k11wk12wk21wk22 imposed above remains satisfied). The

avidities of the Auto-Ag1-specific subclones, tc11 and tc12 (in

black/solid and dashed lines, respectively), and the Auto-Ag2-

specific subclone, tc22 (in gray/dashed lines), are held fixed in each

row.

We begin by setting k21~0:26, in the upper row (A1–A4). The

subclone tc21 has the same parameter values as the ‘‘standard

clone’’ of Fig. 5. Panels (A1) and (A2) show that after a very brief

rise in the level of higher avidity subclones within each clone, tc12

and tc22 (dashed lines), the lower avidity subclones, tc11 and tc21

(solid lines), transiently rise, in a manner similar to Fig. 5, to

occupy the empty niches left by the disappearing higher avidity

subclones and dominate for about 5 and 9 years, respectively. This

happens because the a’s in the T-cell replication term in Eqs. (3a),

(3b) satisfy a11wa12 and a21wa22, which outweighs the effect of

smaller k values for an extended period of time. Eventually,

however, the level of peptide pj rises above a threshold and the

avidity-dependent factor in the replication term dominates,

causing the low-avidity sub-clones to decline to undetectable

levels. At this point, subclone tc11 is rapidly replaced by the higher

avidity subclone tc12, which remains elevated for about 2 years.

Such behaviour, consistently observed in all cases discussed below,

is consistent with the switch phenomenon analyzed in [34]. The

combined cytotoxic effects of having three subclones elevated for

extended periods of time culminates in a loss of beta-cell number

(solid line, panel (A3)) below not only the 30% critical threshold,

but also the steady-state level reached in Fig. 2(D1), when the

standard clone was considered alone.

Decreasing the avidity of the Auto-Ag2-reactive subclone tc21

(increasing k21 to 0.8) in the middle row (B1–B4) significantly

reduces the level of beta-cell destruction shown in panel (B3), an

expected outcome in view of the fact that avidity of tc21 has been

reduced (leading to a reduction in the replication of this subclone).

The main difference we observe in this case compared to the

upper row is that the survival duration of the two subclones tc11

and tc21, shown in panels (B1) and (B2), respectively, is shorter

than that obtained in the previous case (*4 years for the former

and *6 for the latter), unlike the subclone tc12 that roughly

preserves its survival duration. Even though there is no direct

competition between the two main clones of the model, changing

the avidity of the Auto-Ag2-reactive tc21 subclone affected T-cell

accumulation and survival in the Auto-Ag1-reactive subclones.

The most surprising outcome is obtained in the bottom row

(C1–C4), where the avidity of tc21 is decreased by increasing k21 to

1.1. In this case, the combined survival durations of the two clones

(first the low-avidity subclone followed by the switch to the high-

avidity subclone) is close to 12 years (see panels (C1) and (C2)),

leading to more than 70% of beta-cell loss in less than 7 years

(shown in panel (C3)). Such an outcome is consistent with what

was observed in [49], where low- and high-avidity CD4z T cells

coexisted in T1D patients. In the model, decreasing the avidity of

tc12 decreases the level of competition with tc22 and allows the

more damaging subclone to flourish.

Mathematically, the modulation of competition observed as a

result of altering k21 is due to the existence of several transient

autoimmune states similar to the state S2 obtained in the reduced

one-clone model. Because of the high dimensionality of the two-

clone model, these states lie at the intersections of null-

hypersurfaces. These change their configurations as k21 changes,

which may lead to an exchange in stability between the

autoimmune transient steady states. In the last case, a decrease

in competition exerted on tc22 is due to an exchange of stability

from a transient state of the form eSS(1)
2 ~(tc11,tc12,tc21,0) to a

transient state of the form eSS(2)
2 ~(tc11,tc12,tc21,tc22).

Figure 6. Scheme comparing T-cell avidity, killing efficacy and
protein specificity of each subclone under consideration. The
vertical and horizontal axes correspond to the reciprocal of T-cell avidity
(kij ) and T-cell killing efficacy (kij ), respectively. Auto-Ag1 and Auto-Ag2

are two islet-specific autoantigens. As shown, the two Auto-Ag2-
reactive T-cell subclones (in their scaled form), tc21 and tc22, are more
avid and more efficacious in killing beta cells than the two Auto-Ag1-
reactive T-cell subclones tc11 and tc12 (in their scaled form).
doi:10.1371/journal.pone.0014796.g006
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Notice that in all of these cases, the autoantibodies, shown in

panels (A4–A4), that are Auto-Ag2-reactive (gray lines), rise to a

maximum earlier than the Auto-Ag1-reactive ones (black lines).

Such an outcome is expected because it correlates with the avidity

and population sizes of the two T-cell clones tc1j and tc2j , j~1,2,

and their corresponding clones of immunoglobulin secreting

plasma cells.

We illustrate these ideas schematically in Fig. 8, showing the

activation of low- and high-avidity T cells in the pancreatic lymph

nodes (PLNs) via APCs and their recruitment into the islets

according to their avidity level. The high-avidity T-cell clones

induce their corresponding autoantibodies before other lower

avidity clones do. The exclusion of peptide-dependent thymus

input from the model may affect the order in which T cells are

successively activated and recruited in the islets at decreasing

avidities, but the general involvement of these cells and the eventual

outcome of the autoimmune attack are independent of such terms.

T-cell avidity maturation. The surprising contrast between

the first and last cases discussed in Fig. 7 (top and bottom rows) can

be reinterpreted using the notion of avidity maturation, a

phenomenon observed experimentally in [42] when high-risk

human subjects (with one eventually developing T1D) exhibited an

increase in the level of avidity of GAD555-reactive CD4z T cells

with time. This was demonstrated by observing a left shift

(decrease) in the average value of k (or EC50) for these cells

obtained from blood samples taken at different time points.

We define the quantity

Kj~
kj1tcj1zkj2tcj2

tcj1ztcj2
, j~1,2,

which measures the reciprocal of average avidity over time. A

decrease in the value of this quantity corresponds to the avidity

maturation observed in the literature.

We simulate in Fig. 9 the quantity K1 (black) and K2 (gray) using

the subclones of Fig. 7, where each panel in Fig. 9 corresponds to

the similarly labeled row in Fig. 7 ((A) for top, (B) for middle and

(C) for bottom row). In both panels (A) and (B), K1 rises rapidly to

an elevated level and remains elevated for 3–4 years, then starts

declining over time to its steady state level due to the emergence of

the subclone tc12, indicating an increase in the average avidity of

Auto-Ag1-reactive T-cell clone. (The final rises observed at the end

of each simulation is inconsequential because they occur when

both subclones are at near-zero levels.) On the other hand, the

dominance of subclone tc21, due to its larger a-value, in these two

cases, causes K2 to rise rapidly to its steady state (i.e. K2?k21) with

no avidity maturation. The increase in K2 to its steady state level,

however, is larger in panel (B) than in panel (A), indicating a

population of T cells less effective in destroying beta cells in the

former than in the latter. This is consistent with the results in

panels (A3) and (B3) of Fig. 7. In panel (C) of Fig. 9, Kj , j~1,2,

Figure 7. Time evolution of two competing clones of T cells with different antigenic-specificities. The simulations here have been
generated using the scaled version of the two-clone model (3a)–(3g) (see Supplementary Material S1). The scaled levels of (A1–C1) the two low-
avidity Auto-Ag1-specific subclones: tc11 (black/solid) and tc12 (black/dashed); (A2–C2) the two high-avidity Auto-Ag2-specific subclones: tc21 (gray/
solid) and tc22 (gray/dashed); (A3–C3) beta cells bs (black solid); and (A4–C4) immunoglobulin specific to: Auto-Ag1 , ig1 (black), and auto-Ag2 , ig2

(gray), are shown. Dotted lines in panels (A3–C3) correspond to the 30% critical beta-cell number (threshold) required for preventing clinical
symptoms of T1D (staying insulin-independent). Model responses to variations in the value of k21 (while keeping k11~2, k12~1:5 and k22~0:1 fixed)
are simulated to determine the effects of the lower avidity Auto-Ag2-specific subclone, tc21, on disease progression. In the upper panels (A1–A4)
k21~0:26; in the middle panels (B1–B4) k21~0:8; and in the lower panels (C1–C4) k21~1:1. The subclone tc21 in panel (A2) has the same parameter
values as the ‘‘standard clone’’ used in Fig. 5 (white circle). Notice that the levels of autoantibodies, shown in panels (A4–C4), corresponding to the
higher avidity Auto-Ag2-specific subclones (gray lines), become detectable earlier than those corresponding to the lower avidity Auto-Ag1-specific
subclones (black lines). Also, decreasing the level of avidity of tc21 alone in the bottom row (C1–C4), increases the level of beta-cell destruction by
reaching steady state level below the 30% threshold (panel (C3)).
doi:10.1371/journal.pone.0014796.g007
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exhibit slightly different behaviour. K1 goes to a steady state lower

than its initial value after 2 years of transient elevation that is close

to that obtained in panels (A) and (B). K2, on the other hand,

initially rises to an elevated level, then declines to its steady state

level in about 4 years, due to a reduced suppression of subclone

tc22 by tc21. (This competition is mediated by a change in stability

as described above.) The steady-state level reached in this case is

lower than those attained in Figs. 9(A), (B). Thus, after about 5

years, the Auto-Ag2-reactive clone has high average avidity

(K2?k22) and is also more effective in killing beta cells. This is

Figure 8. A scheme illustrating the biology of islet-specific T-cell clonal activation and recruitment. The scheme shows T-cell clonal
activation in the pancreatic lymph nodes (PLNs), according to their level of avidity, and their recruitment into the islets. The expression of
autoantibodies from each step is also shown, where colour diversity represents epitope-specificity of these autoantibodies. Here, the autoantibodies
corresponding to the higher avidity T-cell clone are expressed first.
doi:10.1371/journal.pone.0014796.g008

Figure 9. Avidity maturation of the two main clones of T cells considered in Fig. 7. Each clone is reactive to a given autoantigen (either
Auto-Ag1 or Auto-Ag2 , respectively). The average of the reciprocal of avidity, Kj , is measured for tc1j (black) and tc2j (gray) (j~1,2) for 12 years using
the time evolutions of the four subclones in Fig. 7. Here, panel (A) corresponds to the upper panels (A1–A4) of Fig. 7, (B) corresponds to the middle
panels (B1–B4) and (C) corresponds to the bottom panels (C1–C4). The eventual decay of the quantity K2 , associated with the two subclones tc21 and
tc22, shown in gray in panel (C), to a steady state level lower than the ones reached in panels (A) and (B), indicates increased average avidity relative to
(A) and (B), and thus worse impact on beta cells, as demonstrated in panel (C3) of Fig. 7.
doi:10.1371/journal.pone.0014796.g009

Predicting T1D Disease Onset

PLoS ONE | www.plosone.org 11 May 2011 | Volume 6 | Issue 5 | e14796



www.manaraa.com

consistent with panel (C3) of Fig. 7, showing beta-cell number

declining below the 30% threshold and exhibiting significantly

worse outcomes than those observed in Fig. 9(A). In other words,

T-cell competition in the last case led to avidity maturation

because of reduction in the avidity of tc21 compared to the

previous two cases, which increased beta-cell destruction.

Discussion

During the process of T1D pathogenesis, culminating in beta-

cell destruction and overt diabetes, islet autoantibodies manufac-

tured by the immune system and directed against one or more host

self-proteins serve as reliable surrogate predictive markers of

disease onset. The measurement of islet autoantibodies is now a

clear prerequisite in screening for individuals at risk of developing

insulin requirement. The presence of two or more of these

autoantibodies to islet autoantigens (such as insulin and/or

GAD65 or IA-2, or insulin or ICA) can be used as entry criterion

for interventional trials [54,55]. However, the design of these trials

should be based on the understanding that about 30% or more of

relatives of type 1 diabetics might not develop an insulin

requirement within 15 years. Therefore, the prediction of the

rate of progression to clinical disease is still difficult. Mathematical

modeling may help determine the key risk factors controlling the

timing of disease onset in high-risk individuals for early diagnosis

and early enrollment in preventative therapies. In this paper, we

have taken a first step by investigating two processes, T-cell avidity

and T-cell killing efficacy, that underlie both autoantibody levels

and the risk of progression. Such modeling can be a useful adjunct

to experimental studies because the frequency of autoreactive

CD4z T cells in the peripheral circulation is very low, and the

methods for detecting these T cells are laborious, requiring

expansion of CD4z T cells with antigen for 10 days.

We first used a one-clone model to show that not only avidity

but also killing efficacy of T cells plays a role in determining the

timing of disease onset. These two notions determine the ability of

T cells in responding to stimulation (via the level of expression of

peptides on APCs) and their ability to induce apoptosis into beta

cells. Both of these will have to be taken into account in evaluating

the predictive power of autoantibodies reactive to the same

epitopes as the T cells. Four different regimes associated with the

time course of autoantibody level were identified, depending on

the parameter regime specified by the reciprocal of avidity, k, and

killing efficacy, k (Fig. 4). In one particular parameter regime

(labeled (i), with small k and high-avidity), we found that high-risk

subjects may exhibit a high level of autoantibodies from the start of

the (weak) autoimmune attack and throughout their whole lives

but never develop T1D, a feature consistent with conventional

autoantibodies that are hypothesized to be associated with less avid

T-cell clones. The three remaining outcomes, on the other hand,

were all associated with subjects who eventually developed

autoimmune diabetes, but exhibited various behaviours in the

time course of their autoantibodies. The first outcome (exhibited

by the parameter regime (ii) just right of the critical threshold, with

intermediate k and k values) expressed elevated level of

autoantibodies from the start of the autoimmune attack and

remained elevated throughout, a feature consistent with experi-

mental observations associated with novel autoantibodies (such as

IA-2 [33]). In the second outcome in regime (iii) (also

corresponding to intermediate k and k values but with slightly

higher k), autoantibodies were elevated until disease onset only,

then decayed to undetectable level. Such an outcome is similar to

what has been observed with Insulin autoantibody (IAA) in NOD

mice [50]. Finally, the last outcome in regime (iv) (corresponding

to low k and high k values) exhibited an absence of detectable

autoantibodies throughout, which does not commonly occur in

high-risk subjects.

The timing of disease onset, defined here as the time it takes to

reach the 30% critical threshold, was also evaluated for each of the

four cases (regimes) discussed above. The time range for case (ii),

which corresponded to high-risk subjects expressing elevated level

of autoantibodies throughout, was 7–15 years, depending on the

values of k and k, but more so on k. Such a range is consistent

with what has been observed experimentally when comparing the

predictability of conventional and novel autoantibodies.

We expanded the model to include several competing clones of

T cells with different avidities and autoantigenic specificities to

shed further light on the role of T-cell intra- and cross-clonal

competition on disease progression. The model consisted of two

autoreactive T- and B-cell clones specific to two different

autoantigens. Each T-cell clone included high- and low-avidity

subclones. Using this more complex model, we showed that the

maturation of average avidity within each clone determined the

level of beta-cell destruction and the level of autoantibodies

manufactured by the immune system. For example, in the middle

row of Fig. 7, the low-avidity sub-clones came to dominate,

resulting in a sub-clinical outcome, whereas in the bottom row, the

average avidity of the more avid clone increased (see Fig. 9),

resulting in clinical disease. In the latter case, reducing the avidity

of the less harmful Auto-Ag2-reactive subclone, caused greater loss

of beta cells. This was due to a reduction in the competition level

within the same clone, leading to an increase in the size of the

other competing subclone that was reactive to the same

autoantigen. Such complex dynamics is better understood by

studying model responses to variations in the avidity ratio within

each clone and investigating the impact of such variations in

inducing their corresponding autoantibodies. That work will

appear in an upcoming manuscript.

In our analysis, we have shown that in most cases, the level of

autoantibodies declines to its basal level shortly after the decline of

beta cells to levels below the 30% critical threshold needed to

prevent the outbreak of clinical symptoms of T1D. The basal level

in our model is due to the secretion of immunoglobulin by the

inept B cells. As mentioned earlier, this decline in the level of islet-

specific autoantibodies is consistent with some of the results

obtained from NOD mice in [50]. Experimental evidence in

humans, however, suggests that the level of circulating islet-specific

autoantibodies remains elevated beyond disease onset, an outcome

that is exhibited by our model in a limited parameter regime

within the k,k-plane. Other possible factors that may account for

this type of behaviour have been neglected by our model for

simplicity, such as considering a separate pool of memory T cells

with long half-life; beta-cell neogenesis/replication; and the

possibility of B cells secreting immunoglobulin more efficiently

than assumed here, each of which could keep the level of

autoantibodies elevated even after the cessation of beta-cell

destruction.

Another simplifying assumption in the model is the linear nature

of the effect of autoantigen on the transformation of B cells into

plasma cells (Eqn. 1b). This is a first degree approximation to

Michaelis-Menten type of kinetics like the formulation used for

peptide-dependent T-cell activation. This simplifying assumption

made the reduced one-clone model easier to analyze. In future

efforts, we propose to relax this assumption with the aim of

obtaining better correlation between T-cell avidity and autoanti-

body affinity in predicting disease onset.

There are other possible alternatives for the immunodominance

of certain epitope-specific autoantibodies that have not been
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addressed in the formalism presented here. Examples include: (a)

The level of expression of dominant autoantigenic epitopes (such

as, GAD65 and aa1-256) on DCs and beta cells could be higher

than those less dominant autoantigenic peptides, leading to higher

chances of T- and B-cell activation [56]. In other words, epitope

dominance may be regulated by the level of expression of

autoantigens on DCs and beta cells, rather than by T-cell avidity;

(b) ER stress, which may lead to protein misfolding or unfolding in

beta cells, could be another factor that determines the dominance

of these autoantigenic peptides and their corresponding autoreac-

tive autoantibodies and T cells [36]. That is, such proteins are

more inclined to be misfolded/unfolded than others, making them

more susceptible to degradation and thus rendering them more

immunodominant. Testing such hypotheses will require building

models that take into account the various intracellular pathways

responsible for such behaviour in beta cells and DCs.

Even though our models presented here (with their limitations)

have focused on a subset of factors within a highly complex

immunological system, we were successful in testing the hypothesis

that there is a correlation between the avidity of islet-specific

autoreactive T cells and the risk of developing T1D determined by

circulating autoantibodies reactive to the same autoantigenic

peptides. That correlation, however, also depends on the killing

efficacy of the T cells. Modeling T-cell avidity maturation may

shed light on the mechanisms by which benign self-reactive T cells

develop into a pathological autoreactive T-cell population during

T1D progression, which is potentially of great use given the

technical challenges in collecting longitudinal peripheral blood

lymphocytes (PBL) to quantify autoreactive T-cell avidities. The

models presented here provide a qualitative and quantitative

analysis of this correlation and explain the reason for the

discrepancy in the timing of disease onset between rapid and

slow progressors.

Because many of the parameters of the model are not tightly

constrained by experiment, it is important to assess the sensitivity

of the model to variation in those values. We have done this in two

ways. First, we used the reduced one-clone model, whose

repertoire of responses can be fully explored qualitatively by

phase-plane analysis. We then expanded this module to build the

two-clone model and explored in Fig. 4 the range of behaviors

possible under variation of avidity and killing efficacy, two key

parameters identified from the phase-plane analysis. A more

complete, formal sensitivity analysis [57] of the parameters used in

the models presented here, to investigate the impact of various

parameters on the general behaviour of the model would be an

important future step toward making these models more reliable

quantitatively.

Such models may contribute to the development of tools to

measure the level of risk associated with each epitope-specific

autoantibody and thus prove helpful in diagnosing the disease

before irreversible loss of beta cells. That may help us understand

the disease process and more accurately identify high-risk

individuals at an early stage and enroll them in therapies that

can either block the disease or suppress the immune-mediated

attack.

Methods

Data fitting
To simulate the above models, we must quantify a number of

parameters appearing in system (1a)–(1f). Here we show and explain

the details of our techniques in estimating these parameters.

In [58], it was stated that the half-life of B cells is 35-42 days

and of plasma cells is at least 3–6 days. It follows that g0~

ln (2)=½35{42�~½0:017{0:02� day{1 and dPc
~ ln (2)=½3{6�~

½0:116{0:23� day{1. As for immunoglobulin, its half-life varies

from one isotype to another [59]. Since IgG is the most dominant

isotype associated with T1D, we use its half-life of [7–21] day to

estimate the parameter dIg
~ ln (2)=½7{21�~½0:1{0:33� day{1.

Figs. 1 and 2 in [58] show the time evolution of B-cell

maturation into plasma cells and immunoglobulin secretion for 20

days. The data displayed in these figures were collected from co-

cultures of B and CD3z T cells. Based on these cultures, we can

design a model that is closely related to the full one-clone model

(1a)–(1f), which can be used for data fitting to quantify a few

additional parameters. The model in this case is given by

dTc

dt
~{dTcTc, Tc(0)~1:5|105 ð4aÞ

dB

dt
~({egg2T2

c zegg1Tc{g0)B, B(0)~2:5|104 ð4bÞ

dPc

dt
~egg2T2

c B{dPc Pc, Pc(0)~0,

Pc(16)~24% of the initial population

ð4cÞ

dIg

dt
~a1Bza2Pc{dIg Ig, Ig(0)~0: ð4dÞ

The simulations of system (4a)–(4d) are displayed in Fig. 10. They

were fitted to the curves of plasma cells and IgG secretion/

accumulation shown in Figs. 1 and 2 in [58] (the IgG isotype was

chosen here because it is the most important for T1D, as stated

above). Panel (A) of Fig. 10 shows the level of B cells (black) and

mature plasma cells (gray), while panels (B) and (C) show the level

of secretion and accumulation of IgG, respectively. The parameter

values of Eqs. (4a)–(4d) obtained from this curve fitting are listed in

Table 1.

The value of the killing efficacy k has been estimated to be

1:4|10{7 (cell:day){1 in [35], a value slightly higher than the one

that can be deduced using the data in Fig. 5 in [43] (collected ex-

vivo). In our analysis, we have considered a wide range for k to

overcome this uncertainty (see Table 1).

We also know that T-cell activation is controlled by the level of

peptide surface expression on APCs (and beta cells). This

activation was quantified in both [42,43]. In Fig. 11, we fitted

the T-cell response curve (Fig. 4 in [43]) to increasing level of

peptide surface expression to a Hill function, given by aP=(kzP),
with a Hill coefficient of n~1. This curve fitting was also done in

[42] to estimate the value of k (the level of peptide for 50%-

maximum T-cell activation, usually labeled EC50). The resulting

range for k obtained in [42] was ½0:02{0:18� mM for high-avidity

T cells and ½0:1{9� mM for low-avidity T cells (with about 95–

99% increase in the level of avidity during disease progression in a

T1D patient). Our own estimate obtained from the curve fitting in

Fig. 11 is k~0:18 mg/ml. A whole range for k has been considered

in our analysis to study the effects of avidity on disease onset.

The remaining parameters of the one-clone model have been

previously estimated in [34–36,44,60] and are displayed in their

scaled form (see Supplementary Material S1) in Table 1. As for the

parameters of the scaled two-clone model, they were randomly

selected from the estimated parameter ranges shown in Table 1,

and are listed in Table 2.
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Software
The equations of the model were analyzed by phase plane

methods, and simulated using MATLAB. The model was also

analyzed by linear stability theory and bifurcation methods, as

described in Supplementary Material S1. Bifurcation diagrams

were plotted using XPPAUTO. We have scaled all models, as

shown in Supplementary Material S1, to reduce the number of

parameters and to obtain reasonable quantitative results during

simulations. Most figures shown here have been generated using

the scaled models, unless stated otherwise.

Figure 11. Curve-fitting of T-cell response to autoantigenic stimulation with a given peptide (PPI15{24). The percentage of CD8z T cells
(1E6 clone) staining for intracellular TNF-a in response to (HLA-A2z) PBMCs pulsed with varying concentrations of peptide was measured in [43]
(black line). This dose-dependent behaviour was fitted to a Hill function (gray line) with a Hill coefficient of n~1. The estimated value obtained for the
level of peptide required for 50%-maximum T-cell activation was k~0:18 mg/ml.
doi:10.1371/journal.pone.0014796.g011

Figure 10. Curve-fitting of B-cell maturation into plasma cells and immunoglobulin (autoantibody) secretion/accumulation. B cells
were co-cultured at a density of 25,000 cells/well with ½1{1:5�|105 CD3z T cells, then IgG secretion rate and accumulation were measured from
these cultures [58]. Curve-fitting is applied on (A) the number of B cells remaining (black) and newly formed plasma cells (gray); (B) IgG secretion
(vertical axis is in logarithmic scale); and (C) IgG accumulation.
doi:10.1371/journal.pone.0014796.g010
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Supporting Information

Supplementary Material S1 Provides the theoretical analysis

used to generate some of the results in the main text.

Found at: doi:10.1371/journal.pone.0014796.s001 (0.15 MB

PDF)

Supplementary Material S2 The loss of beta cells over 30-year

period (for a whole range of T-cell avidity and killing efficacy).

Found at: doi:10.1371/journal.pone.0014796.s002 (9.88 MB AVI)
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